

Fig. 4. Dessin stéréoscopique montrant la configuration de la molécule et l'agitation thermique des atomes C, N et O (les ellipsoïdes correspondent à une probabilité de 50%). Les atomes d'hydrogène des groupes méthyl ne sont pas représentés.

Références

BROWN, C. J. (1966). Acta Cryst. 21, 146, 153. GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368. KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849.
KRIGBAUM, W. R., CHATANI, Y. & BARBER, P. G. (1970). Acta Cryst. B26, 97.
ROELENS, A. (1970). Mémoire de licence. Université Catholique de Louvain.

Acta Cryst. (1972). B28, 1724

ThCN Crystal Structure*

BY R. BENZ[†] AND G. P. ARNOLD

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544, U.S.A.

AND W. H. ZACHARIASEN

University of Chicago, Chicago, Illinois 60637, U.S.A.

(Received 28 June 1971)

The crystal structure of ThCN was determined from X-ray and neutron diffraction powder patterns as being C-centered monoclinic, space group $C2/m(C_{2h}^3)$, with the unit-cell dimensions $a_0 = 7.0249 \pm 0.0006$, $b_0 = 3.9461 \pm 0.0002$, $c_o = 7.2763 \pm 0.0009$ Å, and $\beta = 95.67 \pm 0.01^\circ$. Atomic positions are $(000)(\frac{1}{2}\pm 0) + 4$ Thin $\pm (x_{Th}, 0, z_{Th}), 4$ Cin $\pm (x_c, 0, z_c), and 4$ N in $\pm (x_N, 0, z_N), where <math>x_{Th} = 0.177 \pm 0.005, z_{Th} = 0.200 \pm 0.003, x_c = 0.444 \pm 0.005, z_c = 0.560 \pm 0.005, x_N = 0.153 \pm 0.005, and <math>z_N = 0.875 \pm 0.005$. The carbon atoms in the structure occur as triply bonded pairs.

Introduction

The ThCN compound was first described in a report of investigation of the Th–C–N phase system (Benz & Troxel, 1971). Earliest preparations of the compound were impure. Difficulty with preparing pure ThCN was traced to a strong coupling of carbon flux with the nitrogen flux, causing a redistribution of carbon during reaction of ThC with nitrogen (Benz, 1971). Eventually, preparations were obtained that showed no impurities detectable in Debye–Scherrer powder patterns of samples. Composition of the compound, based on chemical analysis of such preparations, was reported as $ThC_{0.96\pm0.02}N_{0.96\pm0.02}$, in which the uncertainty represents the observed range of reproducibility of independent preparations (Benz & Troxel, 1971).

Experimental

ThCN was prepared in 3-gram quantities by the reaction of powder $ThC_{1.00\pm0.01}$ with 1 atmosphere of nitrogen for 1 hour in a tungsten crucible at 1800 to 1850°C. With nitrogen deduced from weight gain, and the assumption of no thorium or carbon loss, the composition of these preparations is calculated as $ThC_{1.00+0.01}N_{0.99+0.02}$.

X-ray diffraction powder patterns were made with nickel-filtered copper radiation. Powder diagrams were obtained with both a Debye–Scherrer camera and a

^{*} This work was carried out under the auspices of the U.S. Atomic Energy Commission.

[†] Present address: Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

Table 1. X-ray diffraction data for powder ThCN as obtained with a diffractometer

(Copper $K\alpha_1$, $\lambda = 1.54051$ Å)

	2	2 heta	Relative	intensities
hkl	Observed	Calculated	Observed	Calculated*
001	12·22°	12·21°	27	26.7
002	24.57	24.57	41	37.5
200	25.46	25.46	26	20.2
110	25.91	25.91	21	20.4
201	27.10	27.10	6	11.2
201	27.17	27.17	100	100.0
111	20.17	20.17	20	28.5
111	29.32	29.20	30	20.9
201	29.44	23.91	27	24.1
202	25.00	35.01	22	241
112	33.09	35.09	20.0	28.0
112	36.90	27.22	39.0	10.0
003	37.23	37.22	10.0	10.0
202	31.41	37.40	0.3	0.0
203		43.37	nli	0.0
113	44.79	44.79	30	27.4
310	45.17	45.15	40	34.3
311	45.88	45.85	8	8.3
020	45.95	45.96	20	18.0
113	47.00	47·01	1	1.3
021	47.76	47.73	3	2.3
203	47.82	47.83	11	11.9
311		48·03	nil	0.3
312	50.02	50.02	11	10.3
004	50.37	50.37	1	0.6
400	52.3	52.30	1	0.9
40 <u>1</u>	52.6	52.60	10	9.5
022	52.78	52.80	14	11.2
220	53.27	53.27	8	6.4
312	54.03	54.06	12	13.4
221	54.17	54.22	7	4∙0
024	54.70	54.70	7	8 ∙0
401	55.23	55.23	5	4.5
221	55.51	55.52	16	15.6
$40\bar{2}$	56.08	56.08	1	1.0
114	56.22	56.23	9	8.6
313	57.09	57.09	13	12.5
227	58.26	58.26	12	11.5
114	58.72	58.74	13	12.1
204	59.73	59.76	2	2.6
023	60.56	60.56	8	10.0
222	60.70	60.72	0.3	0.3
402	61.06	61.06	4	3.8
403	62.37	62.39	3	4.8
313	62.60	62.62	8	7.5
005	62.00	64.27	Ř	5.2
222		65.03	nil	0.0
317	_	66.50	nil	0.0
205	67.47	67.46	1	1.1
205	68.49	68.49	8	8.3
115	60.08	69.08	2	1.5
103	69.34	69.38	1	0.7
403	70.54	70.54	0.5	0.2
407	71.10	71.13	3	2.7
404 51T	/1-10	(71.50	5	(1.1
510	71.50	1 71.52	7	
115	71.01	71.01	0.5	ι η 1.0
420	72.17	77.14	0.2	0.7
420 40T	72.20	72.20	Q . 3	7.2
421	12.33	12.39	0	1.2

* $13.84 \times 10^{-6} j \left[\frac{1 + \cos^2 2\theta}{\sin^2 \theta \cos \theta} \right] F^2$, where j is the multiplicity,

F is the structure factor calculated with the Debye-Waller thermal parameter values of $B_{\rm Th} = 0.2$ and $B_{\rm C} = B_{\rm N} = 0.4$, and atomic scattering factors listed in International Tables for X-ray Crystallography (1959).

Norelco Geiger counter X-ray diffractomerer. Neutron diffraction powder patterns were made at the Omega West Reactor in the Los Alamos Scientific Laboratory. Powder ThCN was sandwiched in the shape of a slab between two parallel sheets of a 63Ti-37Zr alloy (Sidhu, Heaton, Zauberis & Campos, 1956), and diffracted neutrons with the wave length $\lambda = 1.142$ Å were counted with a 70 cm long BF₃ detector. Partial X-ray and neutron diffraction powder patterns of ThCn are listed in columns 2 and 4 of Tables 1, 2 and 3.

Interpretation

The X-ray diffraction pattern of ThCN could not be interpreted on the basis of orthorhombic or higher symmetry. Accordingly, the possibility of monoclinic symmetry was examined. The method previously described for interpreting the complicated diffraction patterns of monoclinic α - and β -phases of plutonium metal was used with success (Zachariasen, 1963).

Table 2. High-angle X-ray diffraction powder pattern data for ThCN as obtained from a film

	(Copper $K \alpha_1$, $\lambda = 1.54051$ A)				
	103	$10^3 \times \sin^2 \theta$		Relative intensity	
hkl	Observed	Calculated	Observed	Calculated [†]	
626	0.9132	0.9135	W+	3.9	
009]	0.0177	∫ 0 •9166	WZ 1	∫ 0.9	
243	0.9177	ໂ 0·9179	<i>W</i> +	{ 2·9	
82ī ́	0.9225	€ 0.9222	F	` 0∙6	
209	0.9230	0.9235	W	5.5	
137	0.9255	0.9258	W+	10.3	
318)	0.9270	∫ 0·9272	F	∫ 4·9	
606 ∫	0 7210	0.9278	1	<u></u> 1 0∙0	
820	0.9289	0.9294	M-	9.9	
731		0.9329		∫ 11·1	
443 }	0.9332	{ 0.9335	M +	{ 2.0	
80 <u>3</u> J		0.9344		6.8	
822 l	0.9373*	J 0.9376	M-	J 10·1	
730 J	0 90 10	0.9378		0.4	
625	0.9415	0.9419	М	J 9.9	
71 <u>6</u> J	0 0 1 50 *	0.9431		[13.8	
119	0.9458*	0.9460	<i>W</i> –	7.8	
444	0.94/3	0.94/9	W	9.9	
132	0.9501	0.9506	<i>w</i> –	4.5	
33/	0.9580	0.9580	W	5.8	
821	0.9600	0.9593	W	6.9	
228		0.9642		13.0	
245	0.9640	1 0.9642	diffuse S	1 7.3	
150		0.9652		14.8	
131 J	0.0659	0.0660	WZ I	10.1	
903	0.0605*	0.9673	W + W +	6.1	
512)	0.9095	(0.0732	<i>W</i> T	(0.9	
15T	0.9734	1 0.9737	M-	20.7	
823	0.9757	0.9757	W	3.1	
517)	0 7151	(0.9772)	,,	(0.4	
151	0.9781	1 0.9783	М	1 8.0	
536	0.9840	0.9843	W	4.7	
535)	0 2070	(0.9872	~	(20.5	
119	0.9873	1 0.9877	S	29.4	
733	0.9911*	0.9910	М	19.3	

* Coincident with the α_2 component of the preceding reflection. † Calculated as described in the footnote of Table 1.

Table 3	8. Neutron	diffraction	data for	powder
	ThCl	$\sqrt{\lambda} = 1.142$	2 Å)	-

	2 heta		Relative intensities	
hkl	Observed	Calculated	$\int C \sin^2 \omega^d \omega^*$	Calculated†
001	9∙05°	9∙05°	39	39
002	18.1	18.15	38	37
200	18.8	18.80	54	54
110	19-1	19.13	77	76
201	20.1	20.07	94 .	93
11T	20.8	20.79	1005	991
$\frac{111}{201}$	21.7	{21.60 21.71	829	$\left. \begin{array}{c} 419\\ 402 \end{array} \right\} 821$
202	_	` 24·90	3	5
112	25.8	25.83	402	419
112		27.13		293
003	27.4	27.37	1810	828 } 1805
202		27.54		684
20 3	_	31.79	3	6
113		32.81		1820
310 31T	33.1	33.07 33.57 33.64	7590	2740 840 1880 7280
<u>, , , , , , , , , , , , , , , , , , , </u>		22 01		,

* Observed peak intensities, where the range of integration extends over the peak width and C is the number of neutrons counted at the angle $\omega = 2\theta$ degrees.

† $[11\cdot2\times10^{24}(\text{cm}^{-2})] \exp(-0.2104 \sec \theta)jF_2$, where $\exp(-0.2104 \sec \theta)$ is an absorption factor, *j* is the multiplicity, and *F* is the structure factor calculated with the Debye-Waller thermal parameter values of $B_{Th}=0.2$ and $B_C=B_N=0.4$, and the neutron scattering amplitudes $b_{Th}=1.01$, $b_C=0.661$, and $b_N=0.94$.

Room-temperature unit-cell dimensions, and their reproducibilities as calculated from the high-angle reflections in powder photographs, are $a_o = 7.0249 \pm 0.0006$, $b_o = 3.9461 \pm 0.0002$, $c_o = 7.2763 \pm 0.0009$ Å, and $\beta = 95.67 \pm 0.01^\circ$. The translation lattice is C-centered, since only reflections with H + K even were observed. There are no other systematic extinctions.

The observed volume of the unit cell is compatible only with four formula units of ThCN, corresponding to a density of $8.54 \pm 00.1_{-0.05}^{+00.1}$ g.cm⁻³. The uncertainty is largely due to uncertainty in composition.

In the X-ray diffraction pattern, carbon and nitrogen atoms have very little effect on the diffraction intensities. Indeed, excellent intensity agreement was obtained by placing four thorium atoms in positions $\pm (x0z) (x + \frac{1}{2}, \frac{1}{2}, z)$ with x=0.18 and z=0.20. These positions suggest the space group C2/m or C2.

Neutron diffraction data were needed to find the positions of the light atoms. The structure finally deduced is:

> Space group $C2/m (C_{2h}^3)$ (000) $(\frac{11}{22}0) +$ 4Th in $\pm (x_{Th}, 0, z_{Th})$ 4C in $\pm (x_c, 0, z_c)$ 4N in $\pm (x_N, 0, z_N)$,

where the position-parameter values giving the best agreement of calculated with observed intensity data were found to be $x_{\rm Th} = 0.177 \pm 0.005$, $z_{\rm Th} = 0.200 \pm$ 0.003, $x_c = 0.444 \pm 0.005$, $z_c = 0.560 \pm 0.005$, $x_{\rm N} = 0.153 \pm 0.005$, and $z_{\rm N} = 0.875 \pm 0.005$. As seen in Tables 1, 2, and 3, both the X-ray and neutron diffraction relative intensities, calculated on the basis of this structure, are in satisfactory agreement with those observed. Corresponding interatomic distances are listed in Table 4.

Table 4. Interatomic distances in the ThCN lattice

C-C(1)	1·23 ± 0·10 Å
Th-N(1)	2.33 ± 0.09
Th-N(1)	2.35 ± 0.08
Th-N(2)	2.40 ± 0.05
Th-C(1)	3.04 ± 0.10
Th-C(1)	3.07 ± 0.10
Th-C(2)	2.82 ± 0.07

Discussion

The carbon atoms occur in pairs in the structure. The short carbon-carbon distance of 1.23 ± 0.10 Å corresponds to a triple bond. Accordingly, the formula of the compound might be written as Th₂C \equiv CN₂.

Since three of the four valence units of carbon are used within the C_2 group, carbon in this compound acts as a univalent atom with respect to thorium. Thus, there is valence balance with the normal valence of three for nitrogen and four for thorium.

Each thorium atom is bonded to four nitrogen atoms and to four carbon atoms. Conversely, each nitrogen atom is bonded to four thorium atoms, and each carbon is bonded to four thorium atoms and to one carbon atom. Since all valences are in balance

with the assumed triple bond within the C_2 group, there is no reason to assume the presence of true thorium-thorium bonds.

The four N-Th bonds are directed toward the corners of a slightly distorted tetrahedron, as illustrated in Fig. 1. Within experimental error, the N-Th bonds are of equal length, 2.36 Å. A great many compounds have structures with a nitrogen atom tetrahedrally bonded to four thorium atoms, and averages of the reported values for the N-Th bond lengths in such compounds range from 2.34 to 2.41 Å (Benz & Zachariasen, 1966, 1969, 1970; Bowman & Arnold, 1971).

When a thorium atom is bonded to both carbon atoms of a C_2 pair, the bond length is considerably longer (3.06 Å) than the value of 2.82 Å, corresponding to binding to only one carbon of a pair. The mean Th-C bond length of 2.98 Å is large compared with the Th-N bond length of 2.36 Å. However, it should be remembered that the carbon atom is effectively univalent with respect to thorium in ThCN and that, hence, the strength of a Th-C bond is only 0.25. In the ThC structure, the bond strength is 0.67 and the bond length is 2.67 Å. The ThC₂ structure (Bowman, Krikorian, Arnold, Wallace & Nereson, 1968) also contains C2 groups, but the carbon-carbon distance of 1.32 ± 0.04 Å corresponds to the formula ThC = C and, thus, the carbon is effectively divalent with respect to thorium. In ThC₂, the mean strength of a Th-C bond is 0.40 and the mean bond length is 2.74 Å.

The weakness of the Th-C bonds in the ThCN structure must cause excellent cleavage parallel to

(001), and must also be responsible for the low density of the compound. The volume per thorium atom in ThCN is 50.4 Å³, compared to the values of 46.4 Å³ for ThC₂ and 43.8 Å³ for ThO₂.

The authors thank the staff at the Omega Site Reactor for their support and cooperation in making our neutron diffraction measurements possible, and Ronald C. Jones for writing a computer program for the graphical integration of counting rates over the neutron diffraction peaks.

References

- BENZ, R. (1971). Nitride Layer Growths on Liquid Thorium and on Solid Th-C Alloys. To be published.
- BENZ, R. & TROXEL, J. E. (1971). Th-C-N Phase Diagram. To be published.
- BENZ, R. & ZACHARIASEN, W. H. (1966). Acta Cryst. 21, 838.
- BENZ, R. & ZACHARIASEN, W. H. (1969). Acta Cryst. B25, 294.
- BENZ, R. & ZACHARIASEN, W. H. (1970). Acta Cryst. B26, 823.
- BOWMAN, A. L. & ARNOLD, G. P. (1971). Acta Cryst. B27, 243.
- BOWMAN, A. L., KRIKORIAN, N. H., ARNOLD, G. P., WALLACE, T. C. & NERESON, N. G. (1968). Acta Cryst. B24, 1121.
- International Tables for X-ray Crystallography (1959). Vol. II, p. 210. Birmingham: Kynoch Press.
- SIDHU, S. S., HEATON, L., ZAUBERIS, D. D. & CAMPOS, F. P. (1956). J. Appl. Phys. 27, 1040.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 784.

Acta Cryst. (1972). B28, 1727

The Crystal and Molecular Structure of 12-Methyl-11,13-dioxo-12-aza-pentacyclo[4.4.3.0.^{1,6}0^{2,10}.0^{5,7}]trideca-3,8-diene

BY KARL J. HWANG, JERRY DONOHUE AND CHUN-CHE TSAI

Department of Chemistry and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pa. 19104, U.S.A.

(Received 17 September 1971)

Crystals of the title compound, $C_{13}H_{11}O_2N$, are orthorhombic, space group Fdd2, Z=8, $a=27\cdot289\pm 0.004$, $b=13\cdot108\pm0.005$, $c=9\cdot165\pm0.002$ Å, $D_x=1\cdot362$ g.cm⁻³. Data for 454 reflections were collected at room temperature on a Picker automated diffractometer. The structure was solved by direct methods, using a computerized multiple-solution procedure, and it was refined by full-matrix least-squares methods to a final R on F of 0.046, with 377 observed reflections. The average e.s.d.'s of the bond lengths and angles not involving hydrogen are about 0.008 Å and 0.5°, respectively. Bond lengths and angles were corrected for thermal motion. Some C–C single bonds are found to be significantly shorter than the normal C–C single bond length of 1.54 Å. The shortening of the C–C bonds is explained by the conjugation of the C=O bond and C=C bond with the three-membered ring.

Introduction

Crystals of what was presumed to be the title compound, $C_{13}H_{11}O_2N$ (III), were obtained from Professor David Ginsburg of the Technion, Haifa, Israel. This compound is the first stable derivative of the long sought, but never isolated, tetracyclo[$4.4.0.0^{2, 10}.0^{5, 7}$]-deca-3,8-diene (I).